
How-To: Build a Web Application with Ajax Part 4

Singletons with JavaScript

A “singleton” is called that because only a “single” instance of that
class exists at any time. Making a class into a singleton is surprisingly
easy:

var ScopeTest = new function() {

 this.message = "Greetings from ScopeTest!";

 this.doTest = function() {

 var onTimeout = function() {

 alert(this.message);

 };

 setTimeout(onTimeout, 1000);

 };

}

Using the keyword new before function creates a “one-shot”
constructor. It creates a single instance of ScopeTest, and it’s done:

you can’t use it to create any more ScopeTest objects.

To call the doTest method of this singleton object, you must use the
actual name of the class (since there’s only the one instance of it):

ScopeTest.doTest();

That’s all well and good, but we haven’t solved our loss of scope
problem. If you were to try the code now, you’d get the same
“undefined” message you saw before, because this doesn’t refer to an

instance of ScopeTest. However, using a singleton gives us an easy
way to fix the problem. All we have to do is use the actual name of the
object — instead of the keyword this — inside onTimeout:

var ScopeTest = new function() {

 this.message = "Greetings from ScopeTest!";

 this.doTest = function() {

 var onTimeout = function() {

 alert(ScopeTest.message);

 };

 setTimeout(onTimeout, 1000);

 };

}

There’s only one instance of ScopeTest, and we’re using its actual
name instead of this, so there’s no confusion about which instance

of ScopeTest is being referred to here.

When you execute this code, you’ll see the expected value of
“Greetings from ScopeTest!” in the JavaScript alert box.

Now, I get tired of using the actual object name throughout my object
code, and I like to use a shortcut keyword like this wherever I possibly
can. So, usually I create a variable self that I can use in place

of this, and point it to the object name at the top of each method,
like so:

var onTimeout = function() {

 var self = ScopeTest;

 alert(self.message);

};

This looks a bit silly in a method that’s as short as that, but in longer
chunks of code it’s nice to have a shorthand solution similar to this
that you can use to refer to your object. I use self, but you could

use me, or heyYou, or darthVader if you wanted to.

Creating the Monitor Object

Now that we have a plan for code organization that will fix the loss-of-
scope problem from setTimeout, it’s time to create our

base Monitor class:

Example 3.2. appmonitor2.js (excerpt)

var Monitor = new function(){

 this.targetURL = null;

 this.pollInterval = null;

 this.maxPollEntries = null;

 this.timeoutThreshold = null;

 this.ajax = new Ajax();

 this.start = 0;

 this.pollArray = [];

 this.pollHand = null;

 this.timeoutHand = null;

 this.reqStatus = Status;

}

The first four
properties, targetURL, pollInterval, maxPollEntries,
and timeoutThreshold, will be initialized as part of the class’s
initialization. They will take on the values defined in the application’s
configuration, which we’ll look at in the next section.

Here’s a brief rundown on the other properties:

• ajax – The instance of our Ajax class that makes the HTTP
requests to the server we’re monitoring.

• start – Used to record the time at which the last request was
sent.

• pollArray – An array that holds the server response times; the
constant MAX_POLL_ENTRIES determines the number of items
held in this array.

• pollHand, timeoutHand – Interval IDs returned by

the setTimeout calls for two different processes — the main
polling process, and the timeout watcher, which controls a user-
defined timeout period for each request.

• reqStatus – Used for the status animation that notifies the
user when a request is in progress. The code that achieved this
is fairly complicated, so we’ll be writing another singleton class
to take care of it. The reqStatus property points to the single
instance of that class.

Configuring and Initializing our Application

A webmaster looking at this application may think that it was quite
cool, but one of the first things he or she would want is an easy way to
configure the app’s polling interval, or the time that elapses between
requests the app makes to the site it’s monitoring. It’s easy to
configure the polling interval using a global constant.

To make it very simple for any user of this script to set the polling
interval, we’ll put this section of the code in a script element within the
head of appmonitor2.html:

Example 3.3. appmonitor2.html (excerpt)

<script type="text/javascript">

 // URL to monitor

 var TARGET_URL = '/fakeserver.php';

 // Seconds between requests

 var POLL_INTERVAL = 5;

 // How many entries bars to show in the bar

graph

 var MAX_POLL_ENTRIES = 10;

 // Seconds to wait for server response

 var TIMEOUT_THRESHOLD = 10;

</script>

You’ll notice that these variable names are written in all-caps. This is
an indication that they should act like constants — values that are set
early in the code, and do not change as the code executes. Constants
are a feature of many programming languages but, unfortunately,
JavaScript is not one of them. (Newer versions of JavaScript allow
you to set real constants with the constkeyword, but this facility isn’t
widely supported (even by many modern browsers).) Note that these
constants relate directly to the first four properties of our
class: targetURL, pollInterval, maxPollEntries,

and timeoutThreshold. These properties will be initialized in our
class’s init method:

Example 3.4. appmonitor2.js (excerpt)

this.init = function() {

 var self = Monitor;

 self.targetURL = TARGET_URL;

 self.pollInterval = POLL_INTERVAL;

 self.maxPollEntries = MAX_POLL_ENTRIES;

 self.timeoutThreshold = TIMEOUT_THRESHOLD;

 self.toggleAppStatus(true);

 self.reqStatus.init();

};

As well as initializing some of the properties of our class,
the init method also calls two methods: toggleAppStatus, which
is responsible for starting and stopping the polling, and
the init method of the reqStatus object. reqStatus is the instance
of the Status singleton class that we discussed a moment ago.

This init method is tied to the window.onload event for the page,

like so:

Example 3.5. appmonitor2.js (excerpt)

window.onload = Monitor.init;

Setting Up the UI

The first version of this application started when the page loaded, and
ran until the browser window was closed. In this version, we want to
give users a button that they can use to toggle the polling process on
or off. The toggleAppStatus method handles this for us:

Example 3.6. appmonitor2.js (excerpt)

this.toggleAppStatus = function(stopped) {

 var self = Monitor;

 self.toggleButton(stopped);

 self.toggleStatusMessage(stopped);

};

Okay, so toggleAppStatus doesn’t really do the work, but it calls

the methods that do: toggleButton, which changes Start buttons
into Stop buttons and vice versa, and toggleStatusMessage, which
updates the application’s status message. Let’s take a closer look at
each of these methods.

The toggleButton Method

This method toggles the main application between its “Stop” and
“Start” states. It uses DOM-manipulation methods to create the
appropriate button dynamically, assigning it the correct text and an
onclick event handler:

Example 3.7. appmonitor2.js (excerpt)

this.toggleButton = function(stopped) {

 var self = Monitor;

 var buttonDiv =

document.getElementById('buttonArea');

 var but = document.createElement('input');

 but.type = 'button';

 but.className = 'inputButton';

 if (stopped) {

 but.value = 'Start';

 but.onclick = self.pollServerStart;

 }

 else {

 but.value = 'Stop';

 but.onclick = self.pollServerStop;

 }

 if (buttonDiv.firstChild) {

 buttonDiv.removeChild(buttonDiv.firstChild);

 }

 buttonDiv.appendChild(but);

 buttonDiv = null;

};

The only parameter to this method, stopped, can either be true,
indicating that the polling has been stopped, or false, indicating that

polling has started.

As you can see in the code for this method, the button is created, and
is set to display Start if the application is stopped, or Stop if the
application is currently polling the server. It also assigns
either pollServerStart or pollServerStop as the button’s
onclick event handler. These event handlers will start or stop the
polling process respectively.

When this method is called
from init (via toggleAppStatus), stopped is set to true so the
button will display Start when the application is started.

As this code calls for a div with the ID buttonArea, let’s add that to
our markup now:

Example 3.8. appmonitor2.html (excerpt)

<body>

 <div id="buttonArea"></div>

</body>

The toggleStatusMessage Method

Showing a button with the word “Start” or “Stop” on it might be all that
programmers or engineers need to figure out the application’s status,
but most normal people need a message that’s a little clearer and
more obvious in order to work out what’s going on with an application.

This upgraded version of the application will display a status message
at the top of the page to tell the user about the overall state of the
application (stopped or running), and the status of the polling process.
To display the application status, we’ll place a nice, clear message in
the application’s status bar that states App Status: Stopped or App
Status: Running.

In our markup, let’s insert the status message above where the button
appears. We’ll include only the “App Status” part of the message in our
markup. The rest of the message will be inserted into a span with the
ID currentAppState:

Example 3.9. appmonitor2.html (excerpt)

<body>

 <div id="statusMessage">App Status:

 </div>

 <div id="buttonArea"></div>

</body>

The toggleStatusMessage method toggles between the words
that can display inside the currentAppState span:

Example 3.10. appmonitor2.js (excerpt)

this.toggleStatusMessage = function(stopped) {

 var statSpan =

document.getElementById('currentAppState');

 var msg;

 if (stopped) {

 msg = 'Stopped';

 }

 else {

 msg = 'Running';

 }

 if (statSpan.firstChild) {

 statSpan.removeChild(statSpan.firstChild);

 }

 statSpan.appendChild(document.createTextNode(msg)

);

};

Once the UI is set up, the application is primed and ready to start
polling and recording response times.

Checking your Work In Progress

Now that you’ve come this far, it would be nice to be able to see your
work in action, right? Well, unfortunately, we’ve still got a lot of loose
ends in our application — we’ve briefly mentioned a singleton class
called Status but we haven’t created it yet, and we still have event

handlers left to write. But never fear! We can quickly get the
application up and running with a few class and function stubs.

We’ll start by creating that Status singleton class with one empty
method.

Example 3.11. appmonitor2.js (excerpt)

var Status = new function() {

 this.init = function() {

 // don't mind me, I'm just a stub ...

 };

}

Since the Status class is used by the Monitor class, we must

declare Status before Monitor.

Then, we’ll add our button’s onclick event handlers to
the Monitor class. We’ll have them display alert dialogs so that we
know what would be going on if there was anything happening behind
the scenes.

Example 3.12. appmonitor2.js (excerpt)

this.pollServerStart = function() {

 alert('This will start the application polling

the server.');

};

this.pollServerStop = function() {

 alert('This will stop the application polling the

server.');

};

With these two simple stubs in place, your application should now be
ready for a test-drive.

Figure 3.2. Humble beginnings

When you click the Start button in the display shown in Figure 3.2
you’re presented with an alert box that promises greater things to
come. Let’s get started making good on those promises.

Polling the Server

The first step is to flesh out the Start button’s onclick event

handler, pollServerStart:

Example 3.13. appmonitor2.js (excerpt)

this.pollServerStart = function() {

 var self = Monitor;

 self.doPoll();

 self.toggleAppStatus(false);

};

This code immediately calls the doPoll method, which, like the app
monitor we built in Chapter 2, Basic XMLHttpRequest, will be
responsible for making an HTTP request to poll the server. Once the
request has been sent, the code calls toggleAppStatus, passing it

false to indicate that polling is underway.

Where’s the Poll Interval?

You might wonder why, after all this talk about setting a poll interval,
our code jumps right in with a request to the server; where’s the time
delay? The answer is that we don’t want a time delay on the very first
request. If users click the button and there’s a ten-second delay before
anything happens, they’ll think the app is broken. We want delays
between all the subsequent requests that occur once the application
is running, but when the user first clicks that button, we want the
polling to start right away.

The only difference between doPoll in this version of our app

monitor and the one we saw in the last chapter is the use of self to
prefix the properties of the class, and the call to setTimeout. Take a
look:

Example 3.14. appmonitor2.js (excerpt)

this.doPoll = function() {

 var self = Monitor;

 var url = self.targetURL;

 var start = new Date();

 self.reqStatus.startProc();

 self.start = start.getTime();

 self.ajax.doGet(self.targetURL + '?start=' +

self.start,

 self.showPoll);

 self.timeoutHand =

setTimeout(self.handleTimeout,

 self.timeoutThreshold * 1000);

};

Our call to setTimeout instructs the browser to
call handleTimeout once the timeout threshold has passed. We’re
also keeping track of the interval ID that’s returned, so we can cancel
our call to handleTimeout when the response is received
by showPoll.

Here’s the code for the showPoll method, which handles the

response from the server:

Example 3.15. appmonitor2.js (excerpt)

this.showPoll = function(str) {

 var self = Monitor;

 var diff = 0;

 var end = new Date();

 clearTimeout(self.timeoutHand);

 self.reqStatus.stopProc(true);

 if (str == 'ok') {

 end = end.getTime();

 diff = (end - self.start) / 1000;

 }

 if (self.updatePollArray(diff)) {

 self.printResult();

 }

 self.doPollDelay();

};

The first thing this method does is cancel the delayed call
to handleTimeout that was made at the end of doPoll. After this,

we tell our instance of the Status class to stop its animation (we’ll be
looking at the details of this a little later).

After these calls, showPoll checks to make sure that the response is
ok, then calculates how long that response took to come back from
the server. The error handling capabilities of the Ajax class should

handle errors from the server, so our script shouldn’t return anything
other than ok … though it never hurts to make sure!

Once it has calculated the response time, showPoll records that

response time with updatePollArray, then displays the result
with printResult. We’ll look at both of these methods in the next

section.

Finally, we schedule another poll in doPollDelay — a very simple
method that schedules another call to doPoll once the poll interval

has passed:

Example 3.16. appmonitor2.js (excerpt)

this.doPollDelay = function() {

 var self = Monitor;

 self.pollHand = setTimeout(self.doPoll,

 self.pollInterval * 1000);

};

To check our progress up to this point, we’ll need to add a few more
stub methods. First, let’s add startProc and stopProc to

the Status class:

Example 3.17. appmonitor2.js (excerpt)

var Status = new function() {

 this.init = function() {

 // don't mind me, I'm just a stub ...

 };

 this.startProc = function() {

 // another stub function

 };

 this.stopProc = function() {

 // another stub function

 };

}

Let’s also add a few stub methods to our Monitor class:

Example 3.18. appmonitor2.js (excerpt)

this.handleTimeout = function() {

 alert("Timeout!");

};

this.updatePollArray = function(responseTime) {

 alert("Recording response time: " +

responseTime);

};

this.printResult = function() {

 // empty stub function

};

Now we’re ready to test our progress. Open appmonitor2.html in
your web browser, click Start, and wait for fakeserver.php to wake

from its sleep and send ok back to your page.

You can expect one of two outcomes: either a response is received by
your page, and you see a dialog similar to the one shown in Figure 3.3,
or you see the timeout message shown in Figure 3.4.

Figure 3.3. A response received by your AJAX application

Don’t worry if you receive the timeout message shown in Figure 3.4.
Keep in mind that in our AJAX application, our timeout threshold is
currently set to ten seconds, and that fakeserver.php is currently
sleeping for a randomly selected number of seconds between three
and 12. If the random number is ten or greater, the AJAX application
will report a timeout.

Figure 3.4. Your AJAX application giving up hope

At the moment, we haven’t implemented a way to stop the polling, so
you’ll need to stop it either by reloading the page or closing your
browser window.

Handling Timeouts

If you’ve run the code we’ve written so far, you’ve probably noticed
that even when a timeout is reported, you see a message reporting the
request’s response time soon afterward. This occurs because
handleTimeout is nothing but a simple stub at the moment. Let’s look
at building on that stub so we don’t get this side-effect.

handleTimeout is basically a simplified version of

showPoll: both methods are triggered by an

asynchronous event (a call to setTimeout and an

HTTP response received by an XMLHttpRequest object

respectively), both methods need to record the

response time (in a timeout's case, this will be

0), both methods need to update the user interface,

and both methods need to trigger the next call to

doPoll. Here's the code for handleTimeout:

Example 3.19. appmonitor2.js (excerpt)

this.handleTimeout = function() {

 var self = Monitor;

 if (self.stopPoll()) {

 self.reqStatus.stopProc(true);

 if (self.updatePollArray(0)) {

 self.printResult();

 }

 self.doPollDelay();

 }

};

Here, handleTimeout calls stopPoll to stop our application polling
the server. It records that a timeout occurred, updates the user
interface, and finally sets up another call
to doPoll via doPollDelay. We moved the code that stops the
polling into a separate function because we’ll need to revisit it later
and beef it up. At present, the stopPoll method merely aborts the

HTTP request via the Ajax class’s abort method; however, there are
a few scenarios that this function doesn’t handle. We’ll address these
later, when we create the complete code to stop the polling process,
but for the purposes of handling the timeout, stopPoll is fine.

Example 3.20. appmonitor2.js (excerpt)

this.stopPoll = function() {

 var self = Monitor;

 if (self.ajax) {

 self.ajax.abort();

 }

 return true;

};

Now, when we reload our application, the timeouts perform exactly as
we expect them to.

The Response Times Bar Graph

Now, to the meat of the new version of our monitoring app! We want
the application to show a list of past response times, not just a single

entry of the most recent one, and we want to show that list in a way
that’s quickly and easily readable. A running bar graph display is the
perfect tool for the job.

The Running List in pollArray

All the response times will go into an array that’s stored in
the pollArray property of the Monitor class. We keep this array

updated with the intuitively named updatePollArray method. It’s a
very simple method that looks like this:

Example 3.21. appmonitor2.js (excerpt)

this.updatePollArray = function(pollResult) {

 var self = Monitor;

 self.pollArray.unshift(pollResult);

 if (self.pollArray.length > self.maxPollEntries)

{

 self.pollArray.pop();

 }

 return true;

};

The code is very straightforward, although some of the functions
we’ve used in it have slightly confusing names.

The unshift method of an Array object puts a new item in the very
first element of the array, and shifts the rest of the array’s contents
over by one position, as shown in Figure 3.5.

Figure 3.5. Inserting fruit using unshift

When the array exceeds the user-defined maximum
length, updatePollArray truncates it by “popping” an item off the
end. This is achieved by the pop method, which simply deletes the last

item of an array. (Note that the method name pop may seem quite
odd, but it makes more sense once you understand a data structure
called a stack, which stores a number of items that can be accessed
only in the reverse of the order in which they were added to the stack.
We “push” an item onto a stack to add it, and “pop” an item from a
stack to retrieve it. The pop method was originally designed for
developers who were using arrays as stacks, but here we’ve
repurposed it simply to delete the last item in an array.) The reason
why we append items to the top and remove items from the bottom of
the array is that, in our display, we want the most recent entries to
appear at the top, and older entries to gradually move down to the
bottom.

Continue with Part 5: Displaying content to Browser

Courtesy: https://www.sitepoint.com/build-your-own-ajax-web-apps/

Modified: 2021.10.04.7.10.AM

Dököll Solutions,. Inc.

https://www.sitepoint.com/build-your-own-ajax-web-apps/

